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Abstract

In this paper, active control of a structure with continuously closely spaced natural frequencies is discussed. To simplify

the analysis, a fundamental case is examined for a structure with three degrees of freedom and a single control input, and

the control algorithm is velocity feedback. Perturbation method is used to analyze the relationship between modal

damping ratios and control gain. Through the analysis of the effect of different spacing of natural frequencies, it is found

that a single input can only control one of the three modes of the closely spaced natural frequencies and the modal

damping ratios of the rest close modes will approach zero. The influence of uncertainty parameters on control effect is also

analyzed and it shows that the sum of modal damping is independent of uncertainty parameters of the system, but depends

only on the control gain.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Many kinds of space structures trend to become larger and more flexible, so vibration control of large space
flexible structures is very important [1]. Large space flexible structures are characterized by lower and closely
spaced natural frequencies, small structure damping, high degree of mode coupling, etc. and therefore their
vibration control is difficult. For the structures with identical natural frequencies, control of these structures
needs the same number of inputs with the number of identical frequencies [2]. However, for the structures with
closely spaced but not identical natural frequencies, according to the control theory, it is possible to control
these structures using smaller number of actuators than the number of closely spaced frequencies. But,
Forward and Swigert [3] studied a cylindrical mast with two closely spaced natural frequencies and found that
when a single control input was used, one mode was highly damped and the other was nearly undamped. Xu et
al. [4,5] applied perturbation method to investigate the vibration control of a structure with two closely spaced
natural frequencies and found that the system became less robust as the spacing of natural frequencies became
closer. Abe [6] proposed a direct velocity feedback algorithm with variable gain to control vibrations in
structures with two closely spaced natural frequencies using a single actuator. Williams and Cheng [7]
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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discussed degrees of controllability and observability for close modes of flexible space structures. Chen et al.
[8–10] treated the control problem of defective and near-defective system well using the generalized modal
theory based on the invariant subspace recursive method, but the number of actuators cannot less than that of
closed eigenvalues.

So far, the control problems of structures with closed spaced frequencies using smaller number of actuators
than the number of closely spaced frequencies have been limited to two closed spaced frequencies. In practice,
large space flexible structures usually have a cluster of closely spaced natural frequencies which are
continuously distributed in low frequency range [11]. Hence it is necessary to research the active control
problem of structures with continuously closely spaced frequencies. The purpose of this paper is to show how
control affects a structure with continuously closely spaced frequencies. To make the results simple and clear,
the simplest and typical case of structures with continuously closely spaced frequencies, i.e. a structure with
three closely spaced frequencies, is analyzed for the vibration control using direct velocity feedback algorithm.
For more than three closely spaced frequencies, similar analysis can be done without new phenomenon, but at
the expense of additional complexity; therefore, the problem of three closely spaced frequencies has its
generality.

In Section 2, the relationship between modal damping and control gain is investigated based on
perturbation method. It demonstrates the influence of the spacing of natural frequencies on control effects. In
Section 3, the influence of uncertainty parameters on control effect is analyzed. Conclusions are given in
Section 4.
2. Influence of the spacing of frequencies on control effect

2.1. Equations of motion

Equations of motion of a structure with three degrees of freedom controlled by a single actuator expanded
by open-loop vibration modes are

I €xðtÞ þ KxðtÞ ¼ BuðtÞ, (1)

uðtÞ ¼ �H _xðtÞ, (2)

where I is the identity matrix; B ¼ fb1; b2; b3g
T is the actuator position vector; H ¼ 2o2fh1; h2; h3g is the gain

vector of direct velocity feedback; and x is the vector of modal displacements. Matrix K ¼ diagðo2
1;o

2
2;o

2
3Þ, is

the open-loop normalized stiffness matrix and oi is the ith open-loop natural frequency. To measure the
spacing of frequencies, two tuning parameters are defined as: a ¼ ðo2 � o1Þ=o2, b ¼ ðo3 � o2Þ=o2. If
frequencies are closely spaced, a;b ¼ OðeÞ, where e is small relative to unity. Without loss of generality, it is
assumed that a;b40. The eigenvalue problem for the closed-loop system is

½Is2j þ BHsj þ K�/j ¼ 0. (3)

The assumption is that the control gain is small, bihj ¼ OðeÞ, and the natural choice for the gains are
b1h1 ¼ b2h2 ¼ b3h3 ¼ h. The complex frequencies are written as sj ¼ o2ði þ djÞ, where dj is a perturbation
parameter of order e. Substituting the expression of sj into Eq. (3) and retaining first-order terms yields the
third-order equation for dj

d3j þ ½3hþ ða� bÞi�d2j þ ½2hða� bÞi þ ab�dj þ hab ¼ 0. (4)

The closed-loop natural frequencies and modal damping can be expressed as

oj ¼ jsjj _¼o2ð1þ ImdjÞ; xj ¼ �Re dj. (5)

The above deductions are similar with the work of Xu [4], but for a structure with three degrees of freedom
here.
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Fig. 1. Modal damping ratios versus control gain: (a) case of the system with two degrees of freedom ðb ¼ 0:02Þ. Solid line, x1; dashed line,

x2. (b) Case of the system with three degrees of freedom. Solid line, x1; dashed line, x2; dotted line, x3.
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2.2. Computational results

2.2.1. Case a ¼ b
For a ¼ b ¼ 0:02, Eq. (4) is simplified as

d3j þ 3hd2j þ a2dj þ ha2 ¼ 0. (6)

According to Eq. (5), the modal damping ratios can be plotted versus the velocity control gain h. Modal
damping ratios of the systems with two and three closely spaced natural frequencies are shown in Fig. 1 where
Fig. 1(a) is based on the results of the literature [4]. When the control gain h is small (hob in Fig. 1(a),
hoð

ffiffiffi
3
p

=6Þa in Fig. 1(b)), the damping ratios x are all linear with respect to h for the two cases. However, when
the control gain h is large, one damping ratio increases and the rest asymptotically approaches zero as the
control gain h increases. That is, only one mode can be controlled when a single input is used. The comparison
of Fig. 1(a) and (b) shows that the low damping ratios of the structure with continuously closely spaced
natural frequencies decrease earlier than that of the structure with two closely spaced natural frequencies.
Furthermore, the maximum value of the low damping ratios in the three frequencies structure is smaller than
that in the two frequencies structure; in other words, the control of the former one is more difficult.

According to the analytical expression, when h ¼ ð
ffiffiffi
3
p

=3Þa, there is a spurious damping jump in Fig. 1(b)
which is meaningless in physics. In order to demonstrate the efficiency of the perturbation method, the
perturbation solutions are compared with the direct numerical solutions of Eq. (3), as shown in Fig. 2 where
the exact solutions are the numerical solutions. It is found that the exact solutions have no damping jump.
However, both damping ratios and frequencies based on perturbation method have jumps. Actually, the
perturbation damping ratio of the mode with middle frequency is always large compared to the other two and
it is in accordance with the exact solutions, so the perturbation method is efficient.
2.2.2. Case aab
When aab, let b ¼ ga, where g is the ratio of the spacing of natural frequencies. Fig. 3(a) shows how the

modal damping ratios vary with the control gain when g ¼ 5. The control gain at damping jump is defined as
hL. The plots show that when hohL, three damping ratios are not equal and only one damping ratio quickly
approaches zero. It is different from Fig. 1(b) where one damping is larger and the rest are equal on the whole.
When h4hL, the middle modal damping ratio also decreases as the control gain h increases. According to the
analytical expressions of Eq. (4), the relationship hL ¼ 1=150

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ g2

p
is found, as shown in Fig. 3(b). On

the whole, hL increases linearly with respect to g, that is, damping ratio x3 can get to a larger value. As a matter
of fact, when g is very large, the system has only two closely spaced natural frequencies and the closed-loop
system has only one modal damping ratio approaching zero. In the discussion of the case a ¼ b, the system has
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Fig. 2. Comparison of exact and perturbation solutions: (a) modal damping ratios versus control gain. Square, exact x1; circle, exact x2;
asterisk, exact x3; Solid line, perturbation x1; dashed line, perturbation x2; dotted line, perturbation x3. (b) Normalized natural frequencies

ðOj ¼ oj=o2Þ versus control gain. Square, exact O1; circle, exact O2; asterisk, exact O3; Solid line, perturbation O1; dashed line,

perturbation O2; dotted line, perturbation O3.
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Fig. 3. The case of different spacing ða ¼ gbÞ: (a) modal damping ratios versus control gain ðg ¼ 5Þ. Solid line, x1; dashed line, x2; dotted
line, x3. (b) Control gain in damping jump versus spacing ratio.
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three closely spaced natural frequencies and the closed-loop system has two modal damping ratio approaching
zero. It comes to the conclusion that a single input can only control one mode of the closely spaced natural
frequencies and the modal damping ratios of the rest close modes will approach zero.

3. Influence of uncertainty parameters on control effect

3.1. Equations of motion

Following the work of Xu [5], two sets of motion equations are considered: (1) the equation of the
postulated structures, which contains errors and on which the control is based, (2) the equations of actual
structures. At first, for an N-degree of freedom postulated structure with a single control force, the equations
of motion in physical coordinates are

M €xþ Kx ¼ F0 þ B0u, (7)
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u ¼ �H0 _x; (8)

where x and F0 are the N-component vectors for displacement response and external forces, respectively;M, K
are the N �N matrices of mass and stiffness, respectively; u is a single control force; B0 is an N-component
vector whose elements depend on the placement of control force; H0 is an N-component gain vector. Let U0 be
the N �N matrix of postulated mode shapes which are normalized such that UT

0MU0 ¼ I, where I is the
identity matrix. By using the transformation x¼U0y, the close-loop system is transformed to N modal
equations:

I€yþ BH_yþ K0y ¼ F, (9)

where, K0 ¼ diag½o2
10; . . . ;o

2
N0�, F¼UT

0 F0, B¼UT
0 B0, H ¼ H0U0.

In practice, the actual parameters of mass and stiffness are known only approximately. Assuming that in
actual system these parameters are denoted by Ma and Ka, respectively, the equatons of the actual system are

Ma €xþ Kax ¼ F0 þ B0u. (10)

By using the same transformation, the close-loop modal equations of the actual system are

I� €yþ BH_yþ K�y ¼ F, (11)

where I� and K� are the disturbed matrices of matrices I and K0 in Eq. (9), respectively. For a system with
three degrees of freedom, the disturbed matrices can be expressed as

I� ¼

1þ 2m11 2m12 2m13

2m12 1þ 2m22 2m23

2m13 2m23 1þ 2m33

2
664

3
775,

K� ¼ o2
2

ð1� aÞ2 þ 2g11 2g12 2g13

2g12 1þ 2g22 2g23

2g13 2g23 ð1þ bÞ2 þ 2g33

2
664

3
775, ð12Þ

where mij , gij ¼ OðeÞ, are disturbances of the postulated modal mass and stiffness matrices, respectively; a,b are
the tuning parameters as defined in Section 2.1. By pre-multiplying I��1 to Eq. (11) and keeping first-order
terms in Eq. (9) yields

I€yþ BH_yþ Ky ¼ F, (13)

where I is the identity matrix

K ¼ o2
2

1� 2a� r1 r2
r1 1þ 2g� r3
r2 r3 1þ 2b�

2
64

3
75 (14)

and

a� ¼ a� ðg11 � m11Þ; g
� ¼ g22 � m22; b

�
¼ bþ ðg33 � m33Þ

r1 ¼ g12 � m12; r2 ¼ g13 � m13; r3 ¼ g23 � m23, ð15Þ

where a�, b� and g� are the diagonal uncertainty parameters which are involved with uncertainty of the
system and the tuning parameters of frequencies. r1, r2 and r3 are off-diagonal uncertainty parameters which
are only involved with uncertainty of the system. By solving directly the corresponding characteristic equation
in Eq. (13), the relationship between modal damping ratios and uncertainty parameters can be obtained.
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Fig. 4. Modal damping ratios versus uncertainty parameters: (a) modal damping ratios versus diagonal parameter a�. (b) Modal damping

ratios versus off-diagonal parameter r1. Solid line, x1; dashed line, x2; dotted line, x3.
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3.2. Computational results

3.2.1. Influence of the diagonal parameters on damping ratios

Firstly, only the influence of the diagonal parameters is considered. Let r1 ¼ r2 ¼ r3 ¼ 0, and a� ¼ b�,
g� ¼ 0, such that matrix L in Eqs. (13) and (3) have the same form and a�, b� are equivalent tuning
parameters. Fig. 4(a) shows the variation of modal damping ratios with respect to a�. When a� ¼ 0, two modes
become undamped. For a structure with closely spaced natural frequencies, a is small and a little change of the
parameters of the system can make a� approach zero. Therefore, the system has undamped modes and may
not be controlled.

3.2.2. Influence of the off-diagonal parameters on damping ratios

Provided a� ¼ b� ¼ 0:04and g� ¼ 0, the influence of off-diagonal parameters is analyzed. Let r2 ¼ r3 ¼ 0,
and how the damping ratios vary with respect to r1 is shown in Fig. 4(b). The plots show that when the
equivalent parameters are large numbers, a little change of r1 has slender influence on modal damping ratios
and even makes low damping ratio increase. However, the low damping ratios will decrease as r1 increases
continually.

3.2.3. Influence of diagonal and off-diagonal parameters on control effect

In order to illustrate the influence of uncertainty parameters more clearly, three-dimensional plots are given
in Fig. 5 to show the modal damping ratios varying with respect to a� and r1, where a� ¼ b�, g� ¼ 0 and
r2 ¼ r3 ¼ 0. When a� is large, a little change of r1 has slender influence on modal damping ratios, which is the
same as case 3.2.2. But when a� is small, the modal damping ratios vary quickly with respect to r1. The reason
for this situation is that when the equivalent tuning parameters are small, the mode shapes are so sensitive to
the uncertainty parameters that a little change of off-diagonal parameters can make the mode shapes change
greatly.

3.2.4. Relationship between the sum of damping ratios and control gain

In the discussions above, the control gains are given as b1h1 ¼ b2h2 ¼ b3h3 ¼ h. From Figs. 4 and 5, one
modal damping ratio increases and the other modal damping ratio decreases accordingly. It seems that the
sum of all damping ratios denoted as xsum is a constant. For a given control gain, the sum ratio xsum varying
with uncertainty parameters is shown in Fig. 6(a). The plotting is a plane, that is, uncertainty parameters can
only change the values of separate damping ratios but not the sum of them. The sum of modal damping ratios
only relates to the control gain and increases linearly with respect to the control gain, as shown in Fig. 6(b),
where b1h1 ¼ b2h2 ¼ h and b3h3 ¼ h1.
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Fig. 5. The surfaces of damping ratios versus uncertainty parameters.

Fig. 6. (a) The sum of modal damping ratios ðxsumÞ versus uncertainty parameters. (b) The sum of modal damping ratios versus the control

gain.
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4. Conclusions

In this paper, the vibration control of a typical system with continuously closely spaced frequencies, a
structure with three closely spaced frequencies, is investigated based on perturbation method. By comparing
the perturbation solutions with the direct numerical ones, the efficiency of the perturbation method is proved.
The behaviors of the structures with two and three closely spaced frequencies under a single actuator are
compared and the influence of the spacing of the closely spaced frequencies on control effect is analyzed. It is
shown that the spacing of natural frequencies is the key parameter with respect to control effect and a single
input can only control one of mode of the closely spaced natural frequencies and the modal damping ratios of
the rest close modes will approach zero.

The influence of uncertainty parameters on control effect is also investigated. The main conclusions are as
follows: the controllability is sensitive to the diagonal parameters; when the diagonal parameters are small, the
modal damping ratios vary quickly with respect to the off-diagonal parameters; the sum of all modal damping
ratios only relates to the control gain and increases linearly with respect to the control gain.
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